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ABSTRACT
Serverless computing becomes prevalent and is widely adopted for
various applications. Deep learning inference tasks are appropriate
to be deployed using a serverless architecture due to the nature of
fluctuating task arrival events. When serving a Deep Neural Net
(DNN) model in a serverless computing environment, there exist
many performance optimization opportunities, including various
hardware support, model graph optimization, hardware-agnostic
model compilation, memory size and batch size configurations, and
many others. Although the serverless computing frees users from
cloud resource management overhead, it is still very challenging
to find an optimal serverless DNN inference environment among
a very large optimization opportunities for the configurations. In
this work, we propose All-You-Can-Inference (AYCI), which helps
users to find an optimally operating DNN inference in a publicly
available serverless computing environment. We have built the
proposed system as a service using various fully-managed cloud
services and open-sourced the system to help DNN application
developers to build an optimal serving environment. The prototype
implementation and initial experiment result present the difficulty
of finding an optimal DNN inference environment with the varying
performance.
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1 INTRODUCTION
Cloud computing has become prevalent in diverse application sce-
narios. Since its introduction, it has evolved in the direction of
hiding complex resource management and operation overheads
with a higher degree of computing resource abstraction. To that
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end, the serverless computing frees users from the burden of server
maintenance for high-availability, enabling them to focus on core
application development. Diverse applications are deployed adopt-
ing the serverless architecture taking advantage of innate high-
availability support from various fully-managed services.

DNN model inference tasks, which take trained DNN models
to serve user requests, can take advantages of the elastic compute
resource offering of serverless computing as the degree of user
requests can vary greatly. However, there exist many challenges
when setting up serverless DNN inference execution environments,
such as limited local file storage, no direct communication among
run-times [13], and rather unstable performance [19, 22]. Despite
these challenges, the current public Function-as-a-Service (FaaS)
and serverless computing provide numerous opportunities for the
performance optimization of DNN inference tasks. These include
the use of new types of hardware (e.g., ARM architecture server),
diverse ephemeral and permanent file storage (object, in-memory
key-value, relational databases), DNN model optimizations, and
optimizing compute resource allocation [27].

The challenges and opportunities of running DNN inference us-
ing a serverless architecture co-exist, and it can be very difficult for
ordinary application developers to understand the characteristics
of up-to-date public FaaS offerings and apply them to their deploy-
ment. Furthermore, different DNN models can result in distinct
performance patterns in a diverse setup [6, 24, 28], and it is barely
generalizable. To expedite the adoption of a serverless architecture
for various applications including DNN inference, the environment
setup and finding optimally performing configurations should be
effortless. To achieve this goal, we develop All-You-Can-Inference
(AYCI) which provides a diverse set of DNN inference environments
adopting a serverless architecture as a web-based service. The cur-
rent implementation supports various hardware types (Intel and
ARM cpus), DNN model optimization (TVM [8] and ONNX [10]),
and development platforms (TensorFlow [1], PyTorch [23], and
MXNet [7]). Users can also set FaaS memory size and batch size
during model serving. Using the proposed system, users can submit
their custom DNN models and receive thorough reports on how
the models would behave with diverse configurations of FaaS.

During the prototype implementation, we tackled lots of tech-
nical challenges as the development pace of relevant technologies
in the prototype is very fast, and it requires extensive efforts to
make it work. To confirm the proposed system work correctly, we
conducted thorough testing, and we could uncover quite drastic per-
formance variations as the FaaS configuration and DNN inference
environment change which are barely generalizable. The qualitative
challenges in building diverse serverless DNN inference systems
and the quantitative performance variations in the serverless in-
ference environments demonstrate the necessity of the proposed
system to provide easy-to-experiment environment.

In summary, the major contributions are as follows.

https://doi.org/10.1145/3565382.3565878
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• The development of various serverless DNN inference en-
vironments and sharing them publicly to help users under-
stand workload performance characteristics on serverless
environments1.

• Uncovering new insights regarding the DNN inference per-
formance variability through comprehensive experiments
on serverless environments.

2 SERVERLESS COMPUTING FOR DNN
MODEL INFERENCE

In a traditional cloud computing service model, users must decide
target services and resource types to launch applications with the
responsibility for operating the resources. Maintaining cloud re-
sources in a highly available manner is not a trivial task which can
be challenging for ordinary cloud system users. Serverless com-
puting allows service operators to deploy applications without the
burden of maintaining a highly available system by using diverse
fully-managed cloud services [13, 25], including FaaS. Since its in-
ception, the usage of serverless computing has been expanding, and
the DNN model inference can well be deployed using the serverless
computing architecture [15]. Unlike DNN model training which
generally requires significant amount of computing power for a rel-
atively longer duration, the amount of computing power required
for DNN model inference is largely dependent on the model size
and the burstiness of users’ requests. The innate auto-scaling sup-
port of FaaS is vital to handle users’ dynamic inference requests.
Furthermore, different from DNN model training that generally
process a batch of input dataset to achieve higher throughput, a
model inference task is generally executed in a single input to
shorten the latency. In general, using GPU is more beneficial for
batch processing. Given that GPU devices are not supported in the
current FaaS yet, serving a DNN model inference task using CPU
with a small batch size can become a reasonable choice.

However, few limitations imposed in the FaaS might hinder the
adoption of DNN model inference. First of all, DNN model serving
requires a large size of library packages to perform inference tasks.
For example, serving a model built using TensorFlow, PyTorch,
and MXNet requires about 3GB, 4.4GB and 1.8GB of storage for
each library, except a model. The large package size can negatively
impact the overall processing throughput especially when a cold-
start happens [26, 27] because a FaaS run-time should load all the
necessary packages from the file storage. Furthermore, most public
FaaS vendors provide limited local file storage of variable sizes
which is not persistent across different executions, and we cannot
make sure the packages can be stored locally in a function.

The evolution of FaaS and serverless computing provides numer-
ous opportunities for serving a DNNmodel. Newly announced FaaS
file storage services [4, 9, 12, 14] can be a solution to store large
DNN packages. The cold-start time can be mitigated by prepar-
ing a function run-time proactively [5]. In addition to widely-
used Intel architecture, new hardware is also supported from pub-
lic FaaS vendors, such as ARM architecture hardware from AWS
Graviton. In setting up a function run-time, the memory size can
greatly impact the overall performance, and the variation is rather
non-deterministic [18, 19, 22]. Batching can help improve serving

1https://github.com/ddps-lab/lambda-optimize-serving
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Figure 1: Major components of All-You-Can-Inference

throughput while satisfying users’ QoS [2]. The flexibility of FaaS
programming models allow the adoption of DNN model graph op-
timizer and hardware compilers, such as ONNX [10] and TVM [8].

Despite the opportunities of the performance improvement, it
is very challenging for DNN application developers to try all the
possible deployment scenarios provided by a serverless computing.
In the literature, many research works have thoroughly evaluated
and compared public FaaS vendors [21, 27]. Few works have pro-
vided an open-source workload suite that can help researchers and
developers to evaluate public FaaS vendors [16, 17, 29]. However,
to the best of the authors’ knowledge, there are no prior work that
can help developers to deploy DNN model serving workloads using
the serverless computing that provides a large configuration space.

3 ALL-YOU-CAN-INFERENCE : SERVERLESS
DNN INFERENCE SUITE

In this work, we propose All-You-Can-Inference, which is a publicly
available DNN inference environment suite on a serverless com-
puting environment. The goal of AYCI is to help DNN application
developers estimate the performance of inference tasks on various
configurations of FaaS so that users can build an optimal serverless
model serving environment. There have been lots of work which
advance the performance of FaaS execution environment. However,
for ordinary users, it is very challenging to setup and try newly
added features to improve the service throughput. AYCI tries to
fill the gap by providing various pre-built environments which
applying the state-of-the-art technologies in FaaS to serve DNN
models. Using AYCI, users provide their custom DNNmodels which
can be executed on various configurations. AYCI provides detailed
performance metrics to users so that they can decide whether it
is worth to take extra time for further optimization in a specific
configuration in FaaS model serving.
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Figure 1 shows the overall architecture of the proposed service.
It is mainly composed of FrontEnd, Data Storage, Runtime Arbitra-
tor, and Output Reporter. The FrontEnd module is responsible for
providing a webpage to access the service. The module takes a
DNN model to execute as an input argument from a user. In addi-
tion, users can specify FaaS run-time configurations, such as target
hardware, model optimizer, hardware compiler, batch sizes, and
memory sizes. AYCI stores prior execution results and performance
metrics of a submitted model in a permanent storage for future
reference. To identify a model, AYCI performs SHA-256 hashing
for a submitted model and concatenates the model size to reduce
the hash value collision possibility. Upon submission of a model
from an user, the FrontEnd checks whether the model has already
been executed in the Data Storage module.

The Data Storage module is responsible for storing input, output,
and intermediate files. To reuse prior execution records, a result
archive stores all the performance metrics in a key-value format.
User-submitted models are stored in a permanent file storage.When
a model needs optimization, an intermediate compiled model is
also stored in the module. The Data Storage module is also respon-
sible for storing and serving container images as a FaaS run-time
environment. The FaaS run-time should be prepared differently
according to the underlying hardware types, DNN development
platforms of different versions, model optimization techniques.

The Runtime Arbitrator module orchestrates the overall pro-
cess of DNN model inference using FaaS. If a user selects a model
optimization testing, the module selects the appropriate model con-
version environment and triggers model compilations. In the model
converter, the input is the user-submitted model from an user, and
the output is the optimized model which is stored in the Data Stor-
age module. A target model for execution, either user-submitted
or optimized, is executed on FaaS with configurations specified
by users. The metric collector in the Runtime Arbitrator module
gathers performance metrics during the model inference execution.
The collected metrics include the inference latency and throughput,
model graph optimization latency, hardware-specific compilation
time, model loading time, library loading time, and maximum mem-
ory usage. The DNN model prediction accuracy is dependent on
the test dataset, and AYCI does not collect accuracy-related metrics.

The Output Reporter module is responsible for presenting infer-
ence metrics to users. The model conversion and inference can take
time, and the result is presented asynchronously. After gathering
performance metrics, the module can send the summarized result
to the submitter via an e-mail. The execution result is stored in
the result archive where users can query the previous execution
performance metrics.

4 SERVICE IMPLEMENTATION
We have implemented the prototype of All-You-Can-Inference us-
ing AWSwhich is shown in Figure 2, and the web service and source
codes are publicly available - https://github.com/ddps-lab/lambda-
optimize-serving. The prototype service is built adopting a server-
less architecture. As shown in Figure 2a, a static frontend web-page
is served from an object storage service, S3. Using the provided web
interface, an user submits a DNN model for testing with various
configurations. With the current prototype implementation with
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Figure 2: The implementation of All-You-Can-Inference as a
service

AWS, users can select target hardware types (Intel and ARM), model
optimizer and hardware compiler (ONNX [10] and TVM [8]), DNN
model development platforms (PyTorch [23], TensorFlow [1], and
MXNet [7]), inference data batch size, and configured memory size.

For input and intermediate model storage, AYCI currently sup-
ports an object storage service, S3. To use an object storage service
as a result archive, AYCI uses the composition of hash of input
model and the size as a key of an object where the value is the
prior execution result. To run inference tasks using FaaS, necessary
packages should be prepared in a storage. Among possible options,
AYCI adopts embedding all the libraries in a FaaS run-time con-
tainer image which is stored in Amazon Elastic Container Registry
(ECR). Using the container image, Lambda run-time is invoked for
different purposes of model optimization converter and executor.
For model graph optimization, AYCI uses ONNX which performs
graph-level transformations, small graph simplifications, node elim-
inations and layout optimizations [10]. For hardware specific model
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compilation, AYCI uses TVM. For the Intel hardware run-time, it
uses the TVM compilation option of hardware target named core-
avx2. For the ARM hardware run-time, it uses the compilation
option of arm_cpu() provided by TVM API. Using ONNX and TVM
optimization is not exclusive, and users can select to optimize using
both libraries. The inference execution Lambda performs serving
tasks using a submitted or optimized model. With the performance
metrics from inference executions, performance estimation Lambda
runs multivariate polynomial regression. The performance metrics
are collected through Amazon CloudWatch, and the final result is
sent by an e-mail with the Simple E-Mail Service (SES).

Figure 2b presents an example implementation of Runtime Ar-
bitrator module in detail. In the prototype implementation, AYCI
uses AWS Step Functions which allows orchestration of multiple
Lambda functions to construct applications with a complex logic in
a Directed Acyclic Graph (DAG) format [3]. The model optimization
and inference execution sequence of AYCI can be well represented
using DAG. For example, if a user selects model optimization us-
ing ONNX followed by hardware-specific compilation using TVM
with a vanilla model execution, the vanilla model execution and
model optimization can happen in parallel. Two consecutive model
optimization can be expressed sequentially. Figure 2b shows the
Step Function implementation with PyTorch. Please note that dif-
ferent DNN development platforms should use distinct function
execution container images, and the Step Function composition
should be built separately. Based on the users’ selection of hardware
and optimization heuristics, the execution path is determined in
a conditional manner. After executing inference task, the result
and performance metrics are sent to a result archiving function
for future reference. In the AWS Lambda configuration, changing
the memory size might not be reflected in real-time and might
cause unexpected cold-start [27], and AYCI deploys distinct Step
Functions sets for pre-defined memory sizes.

5 INSIGHTS FROM SYSTEM EVALUATION
In order to evaluate the effectiveness of using AYCI in the server-
less DNN model inference, we conducted experiments with various
DNN models, SqueezeNet, ShuffleNet, MobileNetV2, MNasNet, Effi-
cientNetB0, ResNet18, ResNet50, InceptionV3, AlexNet, VGG16, and
BERT. To present performance variations while using different
hardware, we use Intel and ARM CPUs that are available by AWS
Lambda. Regarding the model optimizations, we use ONNX and
TVM. To remove the impact from the cold-start and present con-
sistent result, we excluded the result from the first execution and
record next 11 execution result.

Figure 3 compares the performance of CNN and Natural Lan-
guage Processing (NLP) models. We use VGG16 and BERT models
for CNN and NLP, respectively. The model size of both models is
similar. The vertical axis shows the relative latency which is nor-
malized to the best performing case in each configuration. We set
the memory size of Lambda as 10GB where both models could exe-
cute successfully. We could uncover that both models show similar
performance variations for both Intel and ARM CPUs. The Vanilla
environment was the most effective mechanism with Intel hard-
ware, while the TVM optimization was the most effective with ARM
for both models. Observing the similar performance pattern of CNN
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Figure 3: Comparison of CNN and NLP performance varia-
tions in Intel and ARM serverless environments
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ing with serverless compiler configuration

and NLP, we decided to focus on evaluating the CNN performance
for concise presentation.

Observation 1: CNN and NLPmodels show similar performance
patterns with different hardware and model optimization heuristics.

Batching multiple inputs for an inference task are expected to
provide performance benefits in many cases [2], and we conduct
experiments to see the impact of applying batching with diverse
model optimization heuristics. Figure 4 shows how inference task
performance changes as we enable batching with different size for
diverse optimization heuristics which are shown in the horizon-
tal axis. The vertical axis shows the relative throughput which is
normalized to the throughput when the batch size is one. We show
the throughput using a box-whisker plot with execution result of
10 CNN models, where each model is measured ten times, and we
varied the memory size of Lambda as 0.5, 1, 2, 4, 8, and 10𝐺𝐵.

We can observe that the vanilla environment shows the most
performance improvement with batching. When the batch size is 16,
the throughput increased about 1.58×. The throughput of ONNX
and TVM does not increase as much as the vanilla environment
does. We can expect that the performance when applying ONNX
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Figure 5: Efficient memory allocation in serverless environ-
ment

or TVM has already improved by the model optimization, and the
benefit from a larger batch size is not as remarkable as the vanilla
environment.

Observation 2: Batching DNN inference results in through-
put improvement especially in a vanilla serverless environment,
but the batching shows negligible performance gain when model
optimization heuristics are applied.

When using Lambda, setting the proper memory size is very
important to achieve good performance in a cost-efficient way. To
present the performance variations with different Lambda memory
size, Figure 5 present how the CNN models behave differently as
the configured Lambda memory size changes. The horizontal axis
shows the configured memory size. The vertical axis shows the
relative cost-performance normalized for the value when memory
size is 2GB for an arbitrary memory size,𝑀GB, which is calculated
as the 𝑀

2 × 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝑀 )
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (2) . The intuition from the metric is as follow.

The increase in the memory size results in the proportional cost
increase, and whether the memory size increase can result in larger
performance gain that the cost increase. We select the base case
2GB RAM because it shows the best cost-performance.

In most models, the best performance achieved when the con-
figured RAM size is 2GB in a vanilla environment. As the con-
figured memory size becomes larger, we can notice that the cost-
performance metric drops quite significantly. We can conjecture
that for most DNN model inference tasks, increasing the memory
and CPU capacity does not result in proportional performance gain
while incurring larger cost. In the experiment, we use various mod-
els with distinct sizes. Regardless of the model size, setting 2GB
RAM can result in decent DNN inference performance in most
cases.

Observation 3: In a serverless DNN inference, setting the mem-
ory size of Lambda to 2GB results in the best performance in most
cases.

In order to present the best performing DNN inference envi-
ronment, we run inference jobs in all possible cases of 10 CNN
models. We counted the number of best performing cases for each
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hardware-optimization combination and show the result in Fig-
ure 6. In most cases, Intel-ONNX combination achieves the best
performance, especially when the configured Lambda memory size
is small. For larger Lambda memory sizes, we can observe that
the ARM-TVM and Intel-Vanilla options often perform the best.
From this experiment, we can conclude that ARM hardware is not
as efficient as Intel hardware as the service provider announces.
This observation contradicts with previous work which presents
the superb performance of serverless ARM hardware for NLP data
pipeline tasks [20]. In the previous work, the authors did not include
various model optimization heuristics, such as ONNX, as we did.
Due to the growing development eco-system of ARM hardware, the
optimization library might be still in the infant stage. As the devel-
opment eco-system matures, we expect superb cost-performance
gain when using ARM hardware with an optimized model.

Observation 4: The DNN inference performance of ARM hard-
ware is not as good as that of Intel hardware with an optimized
model.

6 RELATEDWORK
Serverless computing has advantages over traditional serverful en-
vironment especially when there are sudden high requests while
serving deep learning models. In the context, MARK [30] proposed
a hybrid system that utilizes on-demand spot instances to save
cost and FaaS systems to handle resource interruption. BATCH [2]
proposed a deep learning inference system based on a FaaS system.
It focuses on proposing an optimal batching heuristic during server-
less DNN inference. Comparing to the previous work, AYCI has
much broader optimization scopes. Similar to AYCI, BentoML [11]
automatically builds a container image which can be deployed
on a public cloud environment. It adopts code-based service de-
ployment approach, while AYCI adopts a fully-managed service
approach with AWS step functions. Regarding using ARM CPU in
FaaS, NLP pipeline workloads [20] showed that ARM hardware can
reduce execution latency and achieve more reliable performance
than on Intel hardware. The workload in the workload is rather
simple and does not require heavy DNN inference packages which
we expect to be the main reason for the performance difference.
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FunctionBench [16] proposes various workloads on FaaS environ-
ment. Multiple optimization heuristics proposed in this work can
be applied to FunctionBench for further performance improvement.

7 CONCLUSION AND FUTUREWORK
We propose All-You-Can-Inference, a fully-managed web-service
which automates evaluation of DNN model inference on a diverse
settings of serverless computing environment. With the presented
system design and the prototype implementation, we showed the
practicality of the proposed system uncovering challenges in the
FaaS environment setup and performance variations for distinct
models. We are certain that the proposed system can help users
build an optimal serverless DNN inference system. The current
system is in the early stage. From the implementation perspective,
serving a model with with some specific environments, such as
MXNet on an ARM FaaS, are not feasible yet, and we actively work-
ing to expand the supporting cases. The current implementation
supports only AWS, andwe are planning to supportMicrosoft Azure
and Google Cloud. We could not gain noticeable performance gain
when applying TVM for hardware-specific compilation because we
have limited hardware information. We are working to improving
the performance of applying TVM on FaaS.
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